Wednesday, 3 May 2017

3 Moving Average Crossover Strategie


Moving Averages: Strategien 13 Von Casey Murphy. Senior Analyst ChartAdvisor Unterschiedliche Anleger verwenden gleitende Mittelwerte aus verschiedenen Gründen. Einige verwenden sie als ihr primäres analytisches Werkzeug, während andere sie einfach als ein Vertrauensbuilder verwenden, um ihre Investitionsentscheidungen zu sichern. In diesem Abschnitt gut präsentieren ein paar verschiedene Arten von Strategien - die Einbindung in Ihren Trading-Stil ist bis zu Ihnen Crossovers Ein Crossover ist die grundlegendste Art von Signal und wird bei vielen Händlern bevorzugt, weil es alle Emotionen entfernt. Die grundlegendste Art der Crossover ist, wenn der Preis eines Vermögenswertes bewegt sich von einer Seite eines gleitenden Durchschnitt und schließt auf der anderen. Preis-Crossover werden von Händlern verwendet, um Verschiebungen im Impuls zu identifizieren und können als eine grundlegende Ein-oder Ausfahrt-Strategie verwendet werden. Wie Sie in Abbildung 1 sehen können, kann ein Kreuz unterhalb eines gleitenden Durchschnitts den Beginn eines Abwärtstrends signalisieren und würde wahrscheinlich von Händlern als Signal verwendet, um bestehende Longpositionen zu schließen. Umgekehrt kann ein Abschluss über einem gleitenden Durchschnitt von unten den Beginn eines neuen Aufwärtstrends nahelegen. Die zweite Art der Crossover tritt auf, wenn ein kurzfristiger Durchschnitt durchläuft einen langfristigen Durchschnitt. Dieses Signal wird von Händlern verwendet, um zu identifizieren, dass sich der Impuls in einer Richtung verschiebt und dass sich eine starke Bewegung wahrscheinlich annähert. Ein Kaufsignal wird erzeugt, wenn der kurzfristige Durchschnitt über dem langfristigen Durchschnitt liegt, während ein Verkaufssignal durch einen kurzfristigen Durchschnittsübergang unterhalb eines langfristigen Durchschnitts ausgelöst wird. Wie Sie aus dem Diagramm unten sehen können, ist dieses Signal sehr objektiv, weshalb es so beliebt ist. Dreifach-Crossover und das Moving Average-Band Zusätzliche gleitende Mittelwerte können dem Diagramm hinzugefügt werden, um die Gültigkeit des Signals zu erhöhen. Viele Händler werden die fünf-, 10- und 20-Tage gleitenden Durchschnitte auf ein Diagramm setzen und warten, bis der fünftägige Durchschnitt kreuzt oben durch die anderen dieses ist im Allgemeinen das Primärkaufzeichen. Warten auf den 10-Tage-Durchschnitt, um über den 20-Tage-Durchschnitt zu kommen, wird oft als Bestätigung verwendet, eine Taktik, die oft die Anzahl der falschen Signale reduziert. Die Erhöhung der Anzahl der gleitenden Mittelwerte, wie in der Dreifach-Crossover-Methode gesehen, ist eine der besten Möglichkeiten, um die Stärke eines Trends zu messen und die Wahrscheinlichkeit, dass der Trend anhalten wird. Dies bettelt die Frage: Was würde passieren, wenn Sie fügte hinzu, bewegte Durchschnitte Einige Leute argumentieren, dass, wenn ein gleitender Durchschnitt nützlich ist, dann müssen 10 oder mehr noch besser sein. Dies führt zu einer Technik, die als das gleitende durchschnittliche Band bekannt ist. Wie Sie aus der Tabelle unten sehen können, werden viele gleitende Mittelwerte auf das gleiche Diagramm gelegt und werden verwendet, um die Stärke des aktuellen Trends zu beurteilen. Wenn alle gleitenden Mittelwerte sich in die gleiche Richtung bewegen, wird der Trend als stark bezeichnet. Umkehrungen werden bestätigt, wenn die Durchschnitte kreuzen und Kopf in die entgegengesetzte Richtung. Die Reaktionsfähigkeit auf veränderte Rahmenbedingungen wird durch die Anzahl der in den gleitenden Durchschnitten verwendeten Zeitperioden berücksichtigt. Je kürzer die in den Berechnungen verwendeten Zeiträume, desto empfindlicher ist der Durchschnitt auf leichte Preisänderungen. Eines der häufigsten Bänder beginnt mit einem 50-Tage gleitenden Durchschnitt und fügt Mittelwerte in 10-tägigen Schritten bis zum endgültigen Durchschnitt von 200. Diese Art von Durchschnitt ist gut bei der Ermittlung langfristige Trends Reversals. Filter Ein Filter ist jede Technik, die in der technischen Analyse verwendet wird, um das Vertrauen eines bestimmten Handels zu erhöhen. Beispielsweise können viele Anleger beschließen, zu warten, bis eine Sicherheit über einem gleitenden Durchschnitt liegt und mindestens 10 über dem Durchschnitt liegt, bevor sie eine Bestellung aufgeben. Dies ist ein Versuch, um sicherzustellen, dass die Frequenzweiche gültig ist und die Anzahl der falschen Signale zu reduzieren. Der Nachteil über die Verteilung auf Filter zu viel ist, dass einige der Verstärkung aufgegeben wird und es könnte dazu führen, dass das Gefühl, wie Sie verpasst das Boot. Diese negativen Gefühle werden im Laufe der Zeit sinken, während Sie die Kriterien für Ihren Filter ständig anpassen. Es gibt keine festgelegten Regeln oder Dinge zu achten, wenn die Filterung seiner einfach ein zusätzliches Tool, das Ihnen erlaubt, mit Vertrauen zu investieren. Moving Average Envelope Eine andere Strategie, die die Verwendung von gleitenden Durchschnitten enthält, wird als Umschlag bezeichnet. Diese Strategie beinhaltet das Plotten von zwei Banden um einen gleitenden Durchschnitt, gestaffelt um einen bestimmten Prozentsatz. Zum Beispiel wird in der nachstehenden Tabelle eine 5-Hüllkurve um einen 25-Tage-gleitenden Durchschnitt platziert. Händler sehen diese Bänder, um zu sehen, wenn sie als starke Bereiche der Unterstützung oder des Widerstandes fungieren. Beachten Sie, wie die Bewegung oft umgekehrt Richtung nach Annäherung an eine der Ebenen. Eine Preisbewegung über die Band kann eine Periode der Erschöpfung signalisieren, und Händler werden für eine Umkehrung in Richtung des Mitteldurchschnitts zu sehen. Moving Average Crossovers Moving durchschnittliche Crossovers sind ein häufiger Weg Händler können Moving Averages verwenden. Eine Überkreuzung tritt auf, wenn ein schnelleres Moving Average (d. h. ein kürzerer Periodenbewegungsdurchschnitt) entweder über einen langsameren Moving Average (d. h. einen längeren Zeitraum Moving Average) kreuzt, der als bullish Crossover oder unterhalb betrachtet wird, der als ein bearish Crossover betrachtet wird. Die nachstehende Tabelle des SampP Depository Receipts Exchange Traded Fund (SPY) zeigt den 50-tägigen Simple Moving Average und den 200-Tage Simple Moving Average. Dieses Moving Average-Paar wird oft von großen Finanzinstituten als Langstreckenindikator der Marktrichtung betrachtet : Beachten Sie, wie die langfristige 200-Tage-Simple Moving Average in einem Aufwärtstrend ist dies oft als ein Signal, dass der Markt ist ziemlich stark interpretiert. Ein Händler könnte erwägen, zu kaufen, wenn die kürzerfristige 50-Tage-SMA über die 200-tägige SMA kreuzt und kontrastreich, könnte ein Händler zu verkaufen, wenn die 50-Tage-SMA kreuzt unter dem 200-Tage-SMA. In dem obigen Diagramm des SampP 500 wären beide potentiellen Kaufsignale extrem rentabel gewesen, aber das eine potentielle Verkaufssignal hätte einen kleinen Verlust verursacht. Denken Sie daran, dass die 50-Tage, 200-Tage Simple Moving Average Crossover ist eine sehr langfristige Strategie. Für diejenigen Händler, die mehr Bestätigung wünschen, wenn sie Moving Average Crossover verwenden, kann die 3 Simple Moving Average Crossover-Technik verwendet werden. Ein Beispiel hierfür ist im Diagramm von Wal-Mart (WMT) gezeigt: Die 3 Simple Moving Average Methode könnte wie folgt interpretiert werden: Der erste Crossover der schnellsten SMA (im Beispiel oben, der 10-Tage SMA) Über die nächste schnellste SMA (20-Tage-SMA) fungiert als eine Warnung, dass die Preise Trend rückläufig sein könnte jedoch in der Regel ein Händler würde nicht eine tatsächliche Kauf-oder Verkaufsauftrag dann. Danach könnte der zweite Crossover der schnellsten SMA (10 Tage) und der langsamste SMA (50-Tage) einen Händler zum Kauf oder Verkauf auslösen. Es gibt viele Varianten und Methoden für die Verwendung des 3 Simple Moving Average Crossover-Methode, einige sind unten vorgesehen: Ein konservativer Ansatz könnte sein, zu warten, bis die mittlere SMA (20-Tage) kreuzt über die langsamere SMA (50-Tage) aber dies Ist im Grunde ein zwei SMA Crossover-Technik, nicht eine drei SMA-Technik. Ein Händler könnte eine Geld-Management-Technik der Kauf einer halben Größe, wenn die schnelle SMA kreuzt über die nächste schnellste SMA und dann geben Sie die andere Hälfte, wenn die schnelle SMA kreuzt über die langsamere SMA. Anstatt halbiert, kaufen oder verkaufen ein Drittel einer Position, wenn die schnelle SMA kreuzt über die nächste schnellste SMA, ein weiteres Drittel, wenn die schnelle SMA kreuzt über die langsame SMA und das letzte Drittel, wenn die zweite schnellste SMA über die langsame SMA kreuzt Aufrechtzuerhalten. Eine Moving Average Crossover-Technik, die 8 Moving Averages (exponentiell) verwendet, ist die Moving Average Exponential Ribbon Indicator (siehe: Exponential Ribbon). Moving Durchschnittliche Übergänge werden oft von Händlern betrachtet. In der Tat Frequenzweichen sind oft in den beliebtesten technischen Indikatoren einschließlich der Moving Average Convergence Divergence (MACD) Indikator (siehe: MACD) enthalten. Andere bewegte Durchschnitte verdienen eine sorgfältige Berücksichtigung in einem Handelsplan: Die obigen Informationen dienen nur zu Informationszwecken und zu Unterhaltungszwecken und stellen keine Handelsberatung oder eine Aufforderung zum Kauf oder Verkauf von Aktien, Optionen, Zukunfts-, Rohstoff - oder Devisenprodukten dar. Die Wertentwicklung in der Vergangenheit ist nicht unbedingt ein Hinweis auf die zukünftige Wertentwicklung. Handel ist von Natur aus riskant. OnlineTradingConcepts haftet nicht für besondere oder Folgeschäden, die aus der Nutzung oder Nichtnutzung, den auf dieser Website bereitgestellten Materialien und Informationen entstehen. Siehe vollständigen Disclaimer. Yahoo Finanzen Studie ermittelt die beste Moving Average Crossover Trading-Strategie Der Dow Jones Industrial Average erhielt eine Menge Presse in dieser Woche, nachdem es seinem ersten traditionellen Todeskreuz erlag nach 2011, wenn die Indexe 50-Tage einfachen gleitenden Durchschnitt (SMA) Unter seiner 200-tägigen SMA. Technische Händler sehen diese Crossover oft als bearish langfristiges technisches Signal an, aber Händler, die den Index und seine Bestandteile verkauften, zum Zeitpunkt des Kreuzes verkauften das Dow, das einem Tropfen von ungefähr 3.5 Prozent in weniger als einem Monat folgt. Das Konzept der Crossover Die Idee hinter dem Handel Crossovers ist, dass ein kurzfristiger gleitender Durchschnitt über einem langfristigen gleitenden Durchschnitt ist ein Indikator für Aufwärts-Impuls in einer Aktie, und das Gegenteil trifft auf einen kurzfristigen durchschnittlichen Handel unter einem langfristigen Durchschnitt, Langfristigen Durchschnitt. Dieses zweite Szenario spielte mit dem Dow in dieser Woche, als die 50-Tage-SMA unter dem 200-tägigen SMA ging. Gibt es bessere Zahlen Die 50-Tage - und 200-Tage-SMAs werden üblicherweise bei der Bestimmung von Crossover verwendet, aber sind sie die besten Mittelwerte, um ETF HQ zu testen, erprobt eine massive Anzahl von Kombinationen von gleitenden Durchschnitten, um zu bestimmen, welche zwei Durchschnittswerte die höchsten Crossover-Handelsrenditen erzeugten . Sie verwendeten insgesamt 300 Jahre Wert von täglichen und wöchentlichen Daten aus 16 verschiedenen globalen Indizes, um festzustellen, welche zwei gleitenden Durchschnittswerte die größten Gewinne für Crossover-Händler ergeben hätten. Erstens stellte die ETF-HQ fest, dass exponentielle gleitende Durchschnittswerte (EMAs), die die jüngsten Kurse stärker als frühere Kurse bewerten, insgesamt besser ausfallen als SMAs, die alle Kurse gleichermaßen gewichten. Unter den kurz - und langfristigen EMAs entdeckten sie, dass der Handel mit den Crossovers der 13-Tage - und 48,5-Tage-Durchschnitte die größten Renditen erzielte. Der Kauf der durchschnittlichen 1348,5-Tage-Gold-Kreuz erzeugte einen durchschnittlichen 94-Tage-4,90 Prozent Gewinn, bessere Renditen als jede andere Kombination. Es ist interessant zu erwähnen, dass Händler, die diese Strategie verwenden, den Dow Mitte Juni, als er um 17875 handelte, fast 400 Punkte höher verkauften, als er zum Zeitpunkt seines 50200-tägigen SMA-Todeskreuzes in dieser Woche handelte. Sehen Sie mehr von Benzinga 2015 Benzinga. Benzinga bietet keine Anlageberatung. Alle Rechte vorbehalten. Part 5: Out-of-Sample-Prognosen. 8 Teil 6: Mögliche Probleme. 9 Teil 7: Wohin gehen wir von hier? 10 Teil 1: Dual Moving Average Crossover Das Konzept eines Dual Moving Average Crossover ist recht einfach. Berechnen Sie zwei gleitende Durchschnitte des Preises eines Wertpapiers, oder in diesem Fall Wechselkurse einer Währung. Ein Durchschnitt wäre der kurzfristige (ST) (streng relativ zum anderen gleitenden Durchschnitt) und der andere langfristig (LT). Mathematisch gesehen wird der langfristige gleitende Durchschnitt (LTMA) eine geringere Varianz aufweisen und sich in die gleiche Richtung bewegen wie der kurzfristige gleitende Durchschnitt, aber mit einer anderen Rate. Die verschiedenen Richtungsrichtungen induzieren Punkte, wo die Werte der beiden sich bewegenden Mittelwerte gleich sein können oder sich kreuzen. Diese Punkte werden die Kreuzungspunkte genannt. In der doppelten gleitenden durchschnittlichen Crossover-Handelsstrategie sind diese Übergänge Punkte der Entscheidung, die Währungen zu kaufen oder zu verkaufen. Was diese Crossover-Punkte implizieren, hängt von der Herangehensweise des Anlegers in seiner Strategie ab. Es gibt zwei Denkrichtungen: Technik und Wert. Der technische Ansatz deutet darauf hin, dass, wenn die Short Term Moving Average (STMA) bewegt sich über dem LTMA, dass ein Buy (oder Long) Signal darstellt. (Umgekehrt, wenn sich die STMA unter dem LTMA bewegt, zeigt die technische Vorgehensweise ein Sell - (oder Short-) Signal an.) Die Intuition hinter dieser Strategie lässt sich in Form von Impulsen erklären. Grundsätzlich besagt das Prinzip des Impulses, dass ein Preis, der während des Zeitraums t nach oben (oder nach unten) verschoben wird, sich im Zeitraum t1 voraussichtlich weiter nach oben (oder nach unten) bewegen wird, sofern nicht das Gegenteil vorliegt. Wenn sich der STMA über dem LTMA bewegt, ergibt dies einen verzögerten Indikator, dass der Preis sich relativ zum historischen Kurs nach oben bewegt. Kaufen Sie hoch, verkaufen Sie höher. Der Value Approach bietet gegenüber dem Technischen Ansatz die gegenüberliegenden Handelssignale. Der Value-Ansatz behauptet, dass, wenn die STMA von unten nach oben über die LTMA, dass die Investition ist jetzt überbewertet, und sollte verkauft werden. Umgekehrt, wenn die Währung STMA unter dem LTMA bewegt, dann die Währung unterbewertet ist, sollte es gekauft werden. Die Intuition hinter dem Value-Ansatz kann einfach als ein mittlerer Reversion-Ansatz betrachtet werden. Kaufen niedrig (Wert), verkaufen hoch (überbewertet). Beide Strategien versuchen, das gleiche Ziel zu erreichen, aber tun es in entgegengesetzter Weise zueinander. In diesem Papier analysieren wir sowohl die technischen als auch die Wertstrategien, wie sie auf die Wechselkurse von EuroUSD angewendet werden. Die folgende Grafik zeigt, wie die duale Crossover-Handelsstrategie Kauf - und Verkaufssignale erzeugt. Beachten Sie, dass die Gewinne und Verluste berechnet werden, indem die Differenz zwischen dem Preis (nicht der gleitende Mittelwert) an den Signalpunkten genommen wird. So wird der tatsächlich gehandelte Kurs mit großer Wahrscheinlichkeit nicht den entsprechenden gleitenden Durchschnittswerten entsprechen. Teil 2: Daten und Methodik Im Folgenden finden Sie eine Tabelle, die die Daten, die wir für diese Zuordnung verwendet haben, zusammenfasst: Hinweis zu Software: Microsoft Excel konnte die Anzahl der Beobachtungen, die wir erhalten konnten, nicht verarbeiten. Es war daher notwendig, ein anderes Softwarepaket zu verwenden, um die Berechnungen durchzuführen oder Software selbst zu schreiben. Wir entschieden, dass C eine geeignete Sprache zu benutzen war. Wir schrieben C-Code, um die folgenden Funktionen mit den Daten zu tun: 1. Saubere Daten, einschließlich Ausfiltern von Wochenenden, Feiertagen und abgestandenen Perioden. 2. Breakout die angegebenen langen und kurzfristigen bewegten Durchschnitten. ein. Gebraucht Fibonacci-Serie als Ausgangspunkt für kurzfristige und langfristig (erste 12 5,8,13,21,34,55,89,144,233,377,610.987 untersucht Ergebnisse nicht anders als unten). B. Berechnen Sie alle Kombinationen von 10 Periodenschritten bis zu 1000. z. B. 10,50 230, 740 (Laufzeit von ca. 30 Minuten, 5050 mögliche Kombinationen) 3. Berechnen Sie die Crossover-Punkte, 4. Identifizieren Sie Crossover als Kaufen oder Verkaufen 5. Ergebnisse berechnen: (mit und ohne Schlupf von 0,0003) e. Durchschnittlicher Winloss f. Perioden unterhalb der Anfangsinvestition g. Max. Portfolio-Wert h. Min. Portfoliowerstwert 6. Bestimmen Sie, welche gleitenden Mittelwerte für die Probenentnahme verwendet werden sollen. 7. Durchführung der Probenanalyse. 8. Vergleiche die Probe mit der Probe. Teil 3: In der Ergebnisanalyse Die nachstehende Tabelle fasst die Ergebnisse der Stichprobenversuche zusammen, die durchgeführt wurden. Im Folgenden werden drei Schlüsselanalysen aus den Beispielberechnungen erläutert: Die doppelte gleitende durchschnittliche Crossover-Strategie kann stabile Gewinne erzielen, wenn kein Schlupf angenommen wird. Darüber hinaus muss man nicht unterscheiden oder selektiv bei der Bestimmung der Parameter für die kurz-und langfristigen bewegten Durchschnitte erfolgreich zu sein. Wenn die Rutschung in den Gewinnberechnungen berücksichtigt wird, unterscheiden sich die Ergebnisse weitgehend von dem obigen Ergebnis. Tatsächlich sind über 65 der möglichen DMAC-Kombinationen nicht rentabel, und es besteht ein beträchtliches Abwärtsrisiko mit einer blinden DMAC-Strategie. Beim Vergleich des technischen Wertansatzansatzes in der Stichprobe ist klar, dass die technische Herangehensweise den Wertansatz signifikant durchführt, was durch die durchschnittliche Gesamtrendite belegt wird. Vergleichen Sie 4.0 (technisch) mit 11.4 (Wert). Etwas interessanter sind die kurzfristigen und langfristigen gleitenden Durchschnittsparameter, die die rentabelsten Renditen erzielen, viel stärker in den technischen Ansatz als der Wertansatz gruppiert. Dies deutet darauf hin, dass der technische Ansatz möglicherweise leichter aus der Probe genommen werden kann. Teil 4: Parameterauswahl für die Out-of-Sample-Analyse Zu diesem Zeitpunkt haben wir eine Auswahlmethode entwickelt, um festzustellen, welchen Bereich von STMA - und LTMA-Parametern für die Probenanalyse empfehlenswert ist. Der Prozess folgt: Berechnete 4.950 Kombinationen von STLT-Portfolios für die in Teil 3 aufgeführten Ausgänge. Sortiert nach Profitabilität Ausgewählte mit Retouren gt10 Sortiert nach ST-Wert Die meisten profitablen ST-Werte gruppiert zwischen 50-130 (Siehe Diagramm unten) Sortiert nach LT-Wert (wiederholt Methodik für ST in der LT) Die meisten profitablen LT-Werte gruppiert zwischen 740-810 (siehe untenstehende Tabelle) Wenn es notwendig wäre, eine einzelne Kombination von DMAC auszuwählen, würden wir die 100 (ST), 770 (LT) als endgültige Kombination empfehlen Selektion Bitte beachten Sie, dass dies nicht der einzige beste Performer der 1746 profitable Kombinationen, sondern stellt eine der besten Kandidaten auf der Grundlage der oben beschriebenen Distributionen. Teil 5: Out-of-Sample-Prognosen In der folgenden Tabelle sind die Ergebnisse der Out-of-Sample-Tests zusammengefasst. Aus der Out-of-Sample-Analyse entdeckten wir, dass es durch die Anwendung eines gut konzipierten Parameterauswahlprozesses tatsächlich gelungen ist, profitable DMAC-Kombinationen auszuwählen. Die Out-of-Probe-Kombinationen zeigten eine beträchtliche Verbesserung gegenüber den In-Probe-Kombinationen. Vergleiche 89 Rentabilität (gescreent, out-of-sample) gegenüber 35 (alle möglichen Kombinationen, in-Probe). Vergleichen Sie auch 2,5 durchschnittliche Rendite (gescreent, out-of-Probe) versus 4,0 durchschnittliche Rendite (alle möglichen Kombinationen, in Probe). Vielleicht sogar noch wichtiger, die abgeschirmten, out-of-sample Ergebnisse zeigten eine weit geringere Standardabweichung und Abwärtsrisiko. Tatsächlich war die schlechtere Rendite unter den Out-of-Sample-Ergebnissen eine 2,7-Rendite. Teil 6: Potenzielle Probleme Es gibt Teile unserer Analyse, die analysiert werden müssen, um zu ermitteln, wo es möglicherweise Gefahren (d. H. Risiken) gibt, die möglicherweise nicht leicht ersichtlich sind: 1) Daten Saubere und unvoreingenommene Daten sind von entscheidender Bedeutung für eine gute Analyse. Angesichts der Zuverlässigkeit in der Quelle der Daten, fühlen wir uns ziemlich zuversichtlich, dass die Daten zwar zutreffend sind, unsere Analyse jedoch nur eine einheitliche Währung für einen Zeitraum von 2 Jahren untersuchte. Obwohl unser Ansatz rein technischer Natur war, rechtfertigt dieser einzelne Datensatz nicht die Verallgemeinerung über andere Währungen oder Vermögensklassen (z. B. Futures, Aktien). 2) Methodik Es gibt eine feine Linie zwischen guter Optimierung und Data Mining. Indem wir alle möglichen Kombinationen von DMAC mit STMA - und LTMA-Parametern zwischen 10 und 990 untersuchten, eröffneten wir uns der Versuchung des Data-Mining-Verfahrens, günstige Ergebnisse zu erzielen, aber mit einer gut durchdachten Methodik der Parameterauswahl fühlten wir uns zuversichtlich, Parameterwerte out-of-sample. Angesichts der Tatsache, dass fast 90 der ausgewählten DMAC-Kombinationen in der Tat profitabel waren, ist es eher unwahrscheinlich, dass wir diese Ergebnisse durch eine Data-Mining-Methode oder eine überoptimierte Parameterauswahlmethode erreichen könnten. 3) Risiko Neben einer eher flüchtigen Betrachtung der Standardabweichung der erwarteten Rendite und der minimalen Gesamtrendite haben wir eine gründliche Bewertung der Risiken nicht durchgeführt. Anleger interessieren sich auch für Metriken wie maximales Drawdown zu jeder Zeit. (Diese Informationen sind auch für die Anreizstruktur für Hedge-Fonds-Manager relevant.) Zusammenfassend sollte eine gründlichere Prüfung der Risiken erforscht werden. Vielleicht könnte diese Analyse einen Filter-Ansatz zum Kauf und Verkauf von Signalen liefern. Infolgedessen würden wir nicht eine immer in (ausgenommen Wochenenden) Strategie annehmen müssen. Teil 7: Wohin gehen wir von hier aus? Aus unseren Ergebnissen sowohl aus der Stichprobe als auch aus der Stichprobenanalyse geht klar hervor, dass es mit der DMAC-Handelsstrategie noch intelligentere Möglichkeiten zur Erfassung der verfügbaren Gewinne geben muss. Erfassen Sie mehr Gewinn durch bessere Timing-Strategien Wir können aus dem DMAC-Diagramm (siehe Abschnitt 1) ​​sehen, dass ein Großteil des potenziellen Gewinns verloren geht, wenn das Handelssignal bereitgestellt wird. Das liegt daran, dass der gleitende Durchschnitt ein trendorientierter, verzögerter Indikator ist, der nur die Kursentwicklung der Vergangenheit widerspiegelt. Wie wir in unseren Analysen und Ergebnissen gezeigt haben, geht der größte Teil des Gewinnpotentials an diesem Punkt zu den Handelskosten verloren (d. H. Die Banken erhalten sie auf dem Devisenmarkt). Um mehr verfügbare Gewinne zu erfassen, empfehlen wir, die folgenden Ideen und Strategien zu untersuchen. Preis gegenüber SMA Crossover-Strategie. Wir empfehlen eine Analyse eines Preises vs. SMA-Crossover. Auf diese Weise wird eine der gleitenden mittleren Verzögerungen aus der Analyse entfernt. In der Tat, dies macht die buysell Signale rechtzeitiger in der Natur. Die möglichen Probleme mit dieser Strategie sind: Erhöhte Transaktionen und damit Kosten. Aktion bei schlechten Signalen (d. h. mehr Peitschen). Technische Analyse Forschung tendenziell vorschlagen, dass DMAC Handelsstrategien Outperform SMA Handelsstrategien. Modelltrend vs. Handelsperioden. Es gibt Zyklen in den Daten, die Zeiträume zeigen, wo die Preise sehr kleine Variationen um einen ähnlichen Preis haben, oder anders ausgedrückt sind sie in einer Handelsperiode. Außerdem gibt es Perioden, in denen die Preise grundlegende Bewegungen von einem Bereich zu einem anderen oder Trendperioden machen. Untersuchen Sie verschiedene Handelsregeln in die Software, die helfen würde zu identifizieren, wenn diese Perioden beginnen und enden kann sehr mächtig sein. Zu den möglichen Ansätzen gehören traditionelle technische Indikatoren wie ADX (DI und DI), Oszillatoren für Handelsperioden (d. h. RSI, CCI). Alternativ könnten erweiterte statistische Ansätze wie versteckte Markov-Modelle untersucht werden. Zusätzliche Handelsregeln: Slope Change Analysis. Es ist möglich, dass eine Analyse der Richtung der Steigung hilfreich sein kann, um einige der verlorenen Gewinne zu erfassen. In diesem Szenario könnte die absolute Richtung der Steigung die Handelsentscheidung zusammen mit der relativen Steigungsanalyse des dualen gleitenden Durchschnitts bestimmen. Obgleich diese Art der Analyse auch rückständig ist und an eine Impulsstrategie grenzt, kann es einen Wert für die Untersuchung geben, ob das Modell durch die Integration robuster werden könnte. Zusätzliche Handelsregeln: Standardabweichung vom LTMA. Bei dieser Strategie könnte eine Ausstiegsentscheidung getroffen werden, wenn sich der aktuelle Kurs um mehr als eine vorgeschriebene Standardabweichung von dem langfristigen bewegten Durchschnitt verschiebt. Diese Art von Handelsregel könnte dazu beitragen, die Gewinne, die sonst verloren gehen würde, wenn ein Spike kommt zurück (oder geht zurück), bevor die gleitenden Durchschnitte Kreuz wieder. Mögliche Risiken dieser Strategie sind: Ermöglicht die Ausübung der Gewinnswelle durch frühzeitige Ausstiege aus gewinnorientierten Handelsgeschäften Erhöhte Handelskosten Auswahl von Anlageklassen (Währungen, Wertpapiere, Futures) In unserer Analyse verwendeten wir Daten, die uns von uns zur Verfügung gestellt wurden Professor Campbell Harvey. Es ist vernünftig anzunehmen, dass es möglich ist, eine Analyse durchzuführen, um rentabelere Währungen und Wertpapiere auszuwählen. Einige mögliche Methoden für die Auswahl umfassen verschiedene Attribut-Bildschirme von Pools von Wertpapieren und Währungen einschließlich univariate und bivariate Bildschirme könnten rentabler Ergebnisse liefern. Predictive Regressionen der wünschenswerten Attribute einschließlich Liquidität und Volatilität etc. für Währungen, Wertpapiere und Futures. Katastrophale Ereignisanalyse Nach mehreren großen oder katastrophalen Ereignissen in den letzten 3 Jahren, einschließlich: August 1998 (Russischer Standard) März 2000 (Fall in US-Aktienmarkt) 11. September 2000 (Terrorist Attack). Obwohl wir zwei dieser drei Ereignisse in unsere Daten aufgenommen haben, sind wir der Meinung, dass eine Analyse durchgeführt werden sollte, um solche Ereignisse zu planen (d. H. Ausstiegsstrategien) und ihre Auswirkungen auf unsere Positionen.

No comments:

Post a Comment